Las matemáticas o la matemática1 (del lat. mathematĭca, y este del gr. μαθηματικά, derivado de μάθημα, conocimiento) es una ciencia formal que, partiendo de axiomas y siguiendo el razonamiento lógico, estudia las propiedades y relaciones entre entidades abstractas con números, figuras geométricas o símbolos, pese a que también es discutido su carácter científico. Las matemáticas se emplean para estudiar relaciones cuantitativas, estructuras, relaciones geométricas y las magnitudes variables. Los matemáticos buscan patrones,2 3 formulan nuevas conjeturas e intentan alcanzar la verdad matemática mediante rigurosas deducciones. Éstas les permiten establecer los axiomas y las definiciones apropiados para dicho fin.4 Algunas definiciones clásicas restringen las matemáticas al razonamiento sobre cantidades,1 aunque solo una parte de las matemáticas actuales usan números, predominando el análisis lógico de construcciones abstractas no cuantitativas.

La palabra «matemática» (del griego μαθηματικά, «cosas que se aprenden») viene del griego antiguo μάθημα (máthēma), que quiere decir «campo de estudio o instrucción». El significado se contrapone a μουσική (musiké) «lo que se puede entender sin haber sido instruido», que refiere a poesía, retórica y campos similares, mientras que μαθηματική se refiere a las áreas del conocimiento que sólo pueden entenderse tras haber sido instruido en las mismas (astronomía, aritmética).7 Aunque el término ya era usado por los pitagóricos (matematikoi) en el siglo VI a. C., alcanzó su significado más técnico y reducido de «estudio matemático» en los tiempos de Aristóteles (siglo IV a. C.). Su adjetivo es μαθηματικός (mathēmatikós), «relacionado con el aprendizaje», lo cual, de manera similar, vino a significar «matemático». En particular, μαθηματική τέχνη (mathēmatikḗ tékhnē; en latín ars mathematica), significa «el arte matemática».
La Sociedad Estadounidense de Matemática distingue unas 5000 ramas distintas de matemáticas.26 En una subdivisión amplia de las matemáticas se distinguen cuatro objetos de estudio básicos: la cantidad, la estructura, el espacio y el cambio[cita requerida] que se corresponden a la aritmética, álgebra, geometría y cálculo.[cita requerida] Además, hay ramas de las matemáticas conectadas a otros campos como la lógica y teoría de conjuntos, y las matemáticas aplicadas.
La mayor parte de la notación matemática que se utiliza hoy en día no se inventó hasta el siglo XVIII.17 Antes de eso, las matemáticas eran escritas con palabras, un minucioso proceso que limitaba el avance matemático. En el siglo XVIII, Euler, fue responsable de muchas de las notaciones empleadas en la actualidad. La notación moderna hace que las matemáticas sean mucho más fácil para los profesionales, pero para los principiantes resulta complicada. La notación reduce las matemáticas al máximo, hace que algunos símbolos contengan una gran cantidad de información. Al igual que la notación musical, la notación matemática moderna tiene una sintaxis estricta y codifica la información que sería difícil de escribir de otra manera.
El lenguaje matemático también puede ser difícil para los principiantes. Palabras tales como o y sólo tiene significados más precisos que en lenguaje cotidiano. Además, palabras como abierto y cuerpo tienen significados matemáticos muy concretos. La jerga matemática, o lenguaje matemático, incluye términos técnicos como homeomorfismo o integrabilidad. La razón que explica la necesidad de utilizar la notación y la jerga es que el lenguaje matemático requiere más precisión que el lenguaje cotidiano. Los matemáticos se refieren a esta precisión en el lenguaje y en la lógica como el «rigor».
El rigor es una condición indispensable que debe tener una demostración matemática. Los matemáticos quieren que sus teoremas a partir de los axiomas sigan un razonamiento sistemático. Esto sirve para evitar teoremas erróneos, basados en intuiciones falibles, que se han dado varias veces en la historia de esta ciencia.18 El nivel de rigor previsto en las matemáticas ha variado con el tiempo: los griegos buscaban argumentos detallados, pero en tiempos de Isaac Newton los métodos empleados eran menos rigurosos. Los problemas inherentes de las definiciones que Newton utilizaba dieron lugar a un resurgimiento de un análisis cuidadoso y a las demostraciones oficiales del siglo XIX. Ahora, los matemáticos continúan apoyándose entre ellos mediante demostraciones asistidas por ordenador.19
Un axioma se interpreta tradicionalmente como una «verdad evidente», pero esta concepción es problemática. En el ámbito formal, un axioma no es más que una cadena de símbolos, que tiene un significado intrínseco sólo en el contexto de todas las fórmulas derivadas de un sistema axiomático.